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Concept Drift: a Challenge for Intent Inferral using Biosignals
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Approach: Disagreement-based Semi-supervision
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Experiments and Results
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e Ve evaluate our method
both offline and online.

e Despite being trained only
on one condition, our
method outperforms the
the supervised learning
baseline that is trained on
all conditions.

e In the online functional
task, two subjects
successfully completed
multiple instances of a
pick-and-handover task.



